RESUME
A PROPOS
La Revue Africaine d’Environnement et d’Agriculture est placée sous l’autorité scientifique du Comité de Rédaction
et sous l’autorité administrative des ASBL CABD (Centre d’Assistance des Communautés de Base pour le Développement Durable),
GERADIB (Groupe d’Etudes et de Recherches Agropastorales pour le Développement de Bandundu) et SOFT AFRICA.
Utiliser cet identifiant pour créer un lien vers cet article :
https://?pages=article&id=336
Titre : | Mapping mangrove disturbance state using decision tree classification based on Sentinel-2 surface reflectance spectral indices, elevation, and salinity data in the Parc Marin des Mangroves (Moanda, Democratic Republic of Congo) |
Auteur(s): | Raymond Lumbuenamo Sinsi, Elie Nsimba Ngembo, Eric Lutete Landu, Arielle Mabaya, Bonaventure Lele Nyami, Cedric Kompani Daba, Arsène Kayengi Baziota, Dan Lusolamo Nguizani, Giresse Bifubiambote Salambiaku, Louis Ngeli Mpayi, Hippolyte Ditona Tsumbu, Roger |
Mots-clés: | Decision Trees, mangrove mapping, spectral indices, Parc Marin des Mangroves/DRC |
Date de publication | 2025-06-28 14:33:13 |
Resumé : | Description of the subject. Despite increased human pressures, few studies have characterized disturbance states of mangroves using local ecological conditions, such as those of the Parc Marin des Mangroves (PMM) in the Congo Basin.
Objectives. Assess the state of the mangrove stands disturbance in the PMM by: (a) analyzing elevation, salinity, and spectral indices variability, (b) mapping mangrove disturbance, and (c) estimating the area of each disturbance class. Methods. Sentinel-2 surface reflectance data from March 2024 to March 2025 were used to compute three spectral indices: NDVI, NDMI, and CMRI. Elevation data were derived from the Shuttle Radar Topography Mission, and a spatial salinity model was interpolated from field water stream electrical conductivity measurements. The Global Mangrove Watch 2020 data defined the extent of mangroves. A decision tree classifier used thresholds for each variable: undisturbed mangroves had NDVI > 0.55, CMRI > 0.5, and NDMI > 0.1, while disturbed mangroves had NDVI between 0.3 and 0.55, CMRI > 0.3, and NDMI > 0.1. Non-mangrove areas included pixels below these thresholds. Mangroves were mapped between 0-46m of elevation with conductivity values higher than 30 μS/cm, including a mask of artefact values predicted within the mangrove area. Results. Mangroves spanned 242.4 km², with 76.89 km² (10.53%) disturbed and 165.51 km² (22.68%) undisturbed. Non-mangrove areas totaled 487.24 km² (66.77%). After adjusted pixels area-bias correction, mangrove coverage was 242.46 ± 11.98 km², with an overall accuracy of 96.90 %. Conclusion. Local field inventories are essential to refine mangrove mapping and capture ecological nuances missed by global models. |
Editeur : | RAFEA |
DOI : |
https://dx.doi.org/10.4314/rafea.v8i2.15 |
Document pour cet article:
Fichier | Description | Taille | Format | |
---|---|---|---|---|
ARTICLE-RAFEA | OPEN ACCESS | 1087 ko | Adobe PDF | Lire article |